Apprendimento automatico (machine learning)

Processo mediante il quale gli algoritmi imparano a riconoscere modelli nella realtà, analizzando insiemi molto estesi di dati. L’algoritmo è privo di regole e modelli espliciti pre-programmati e diventa capace di identificare autonomamente relazioni tra i dati, perché adatta sé stesso elaborando le informazioni che riceve e ricavandone schemi e associazioni.

Questo modello consente di identificare schemi e correlazioni spesso troppo complessi per essere individuati dagli esseri umani. Secondo vantaggio è l’altissima velocità operativa, associata alla potenza di calcolo.

Vi sono tre categorie principali di tecniche: supervised, unsupervised e reinforced.

Il supervised learning è la tecnica per cui l’algoritmo confronta i suoi risultati con i risultati corretti durante la fase di apprendimento: formula previsioni sui dati ed è corretto se sbaglia; questo meccanismo cessa quando le prestazioni raggiungono un livello accettabile.

Con il unsupervised learning l’algoritmo deve individuare strutture, schemi e associazioni che legano un insieme di dati, senza confrontarli con un insieme di risultati.

Il reinforced learning (apprendimento con rinforzo) prevede che l’algoritmo impari per tentativi ed errori: prova schemi diversi, da mantenere o scartare in funzione della corretteza o meno dei risultati fino a quando individua lo schema che rende minimo il numero di errori.

Il deep learning, inoltre, utilizza le reti neurali – che imitano il funzionamento del cervello – in cui l’algoritmo stimola con dati in entrata un insieme di neuroni che producono un dato in uscita. La rete neurale comprende più livelli e i segnali di input e output passano da un nodo all’altro utilizzando connessioni o collegamenti analoghi alle giunzioni sinaptiche tra i neuroni. Il livello finale definisce la risposta dell’intero processo.

Con il termine black box si definiscono alcuni sistemi di machine learning che da un input forniscono un output e in cui i calcoli che il processo comporta non sono del tutto trasparenti e interpretabili. In particolare, vengono individuate correlazioni che non hanno necessariamente un rapporto di causazione.

Il natural language processing comprende gli algoritmi in grado di «comprendere» il linguaggio parlato o scritto, mediante analisi di vocabolario, grammatica, contesto e variazioni d’uso, e si situa nel machine learning.

amazon

amazon2

Brevetto per “un metodo che permette ad un sistema informatico di utilizzare l’assistenza umana nell’esecuzione di compiti e (… ) di remunerare l’umano”, depositato nel 2001 da V. Harinarayan, per conto di Amazon.

8 commenti

  1. […] L’estrazione di valore dalle risorse materiali da una parte e dai dati dall’altra è in posizione di comando nell’assetto complessivo del capitalismo. L’estrattivismo è profitto che si trasforma in rendita e si estende anche al campo open-source, come nel caso dell’appropriazione da parte di Google del sistema operativo Android. Esso sussume il “sociale” nell’economico, catturando identità e interazioni in funzione della profilazione; trasforma il tempo libero in lavoro gratuito e invisibile, occultato dal mito degli algoritmi e dell’intelligenza artificiale. […]

    "Mi piace"

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo di WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione /  Modifica )

Google photo

Stai commentando usando il tuo account Google. Chiudi sessione /  Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione /  Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione /  Modifica )

Connessione a %s...